08 Сентября 2019 г.

Технология LCD, принцип работы. Устройство TFT матрицы

LCD-матрица. Принцип работы жидкокристаллической панели.

"Сердцем" любого жидкокристаллического монитора является LCD-матрица (Liquid Crystall Display). ЖК-панель представляет из себя сложную многослойную структуру. Упрощенная схема цветной TFT LCD-панели представлена на Рис.2.

Принцип работы любого жидкокристаллического экрана основан на свойстве жидких кристаллов изменять (поворачивать) плоскость поляризации проходящего через них света пропорционально приложенному к ним напряжению. Если на пути поляризованного света, прошедшего через жидкие кристаллы, поставить поляризационный светофильтр (поляризатор), то, изменяя величину приложенного к жидким кристаллам напряжения, можно управлять количеством света, пропускаемого поляризационным светофильтром. Если угол между плоскостями поляризации прошедшего сквозь жидкие кристаллы света и светофильтра составляет 0 градусов, то свет будет проходить сквозь поляризатор без потерь (максимальная прозрачность), если 90 градусов, то светофильтр будет пропускать минимальное количество света (минимальная прозрачность).

Принцип работы LCD-панели
Принцип работы LCD-панели

Рис.1. ЖК-монитор. Принцип работы LCD-технологии.

Таким образом, используя жидкие кристаллы, можно изготавливать оптические элементы с изменяемой степенью прозрачности. При этом уровень светопропускания такого элемента зависит от приложенного к нему напряжения. Любой ЖК-экран у монитора компьютера, ноутбука, планшета или телевизора содержит от нескольких сотен тысяч до нескольких миллионов таких ячеек, размером долей миллиметра. Они объединены в LCD-матрицу и с их помощью мы можем формировать изображение на поверхности жидкокристаллического экрана.
Жидкие кристаллы были открыты еще в конце XIX века. Однако первые устройства отображения на их основе появились только в конце 60-х годов XX века. Первые попытки применить LCD-экраны в компьютерах были предприняты в восьмидесятых годах прошлого века. Первые жидкокристаллические мониторы были монохромными и сильно уступали по качеству изображения дисплеям на электронно-лучевых (ЭЛТ) трубках. Главными недостатками LCD-мониторов первых поколений были:

  • - низкое быстродействие и инерционность изображения;
  • - «хвосты» и «тени» на изображении от элементов картинки;
  • - плохое разрешение изображения;
  • - черно-белое или цветное изображение с низкой цветовой глубиной;
  • - и т.п.

Однако, прогресс не стоял на месте и, со временем, были разработаны новые материалы и технологии в изготовлении жидкокристаллических мониторов. Достижения в технологиях микроэлектроники и разработка новых веществ со свойствами жидких кристаллов позволило существенно улучшить характеристики ЖК-мониторов.

Устройство и работа TFT LCD матрицы.

Одними из главных достижений стало изобретение технологии LCD TFT-матрицы – жидкокристаллической матрицы с тонкопленочными транзисторами (Thin Film Transistors). У TFT-мониторов кардинально возросло быстродействие пикселей, выросла цветовая глубина изображения и удалось избавиться от «хвостов» и «теней».
Структура панели, изготовленной по TFT технологии, приведена на Рис.2

Структура ЖК-панели

Рис.2. Схема структуры TFT LCD матрицы.
Полноцветное изображение на ЖК-матрице формируется из отдельных точек (пикселей), каждая из которых состоит обычно из трех элементов (субпикселей), отвечающих за яркость каждой из основных составляющих цвета - обычно красной (R), зеленой (G) и синей (B) - RGB. Видеосистема монитора непрерывно сканирует все субпиксели матрицы, записывая в запоминающие конденсаторы уровень заряда, пропорциональный яркости каждого субпикселя. Тонкопленочные транзисторы (Thin Film Transistor (TFT) - собственно, поэтому так и называется TFT-матрица) подключают запоминающие конденсаторы к шине с данными на момент записи информации в данный субпиксель и переключают запоминающий конденсатор в режим сохранения заряда на все остальное время.
Напряжение, сохраненное в запоминающем конденсаторе TFT- матрицы, действует на жидкие кристаллы данного субпикселя, поворачивая плоскость поляризации проходящего через них света от тыловой подсветки, на угол, пропорциональный этому напряжению. Пройдя через ячейку с жидкими кристаллами, свет попадает на матричный светофильтр, на котором для каждого субпикселя сформирован свой светофильтр одного из основных цветов (RGB). Рисунок взаиморасположения точек разных цветов для каждого типа ЖК-панели разный, но это отдельная тема. Далее, сформированный световой поток основных цветов поступает на внешний поляризационный фильтр, коэффициент пропускания света которого зависит от угла поляризации падающей на него световой волны. Поляризационный светофильтр прозрачен для тех световых волн, плоскость поляризации которых параллельна его собственной плоскости поляризации. С возрастанием этого угла, поляризационный фильтр начинает пропускать все меньше света, вплоть до максимального ослабления при угле 90 градусов. В идеале, поляризационный фильтр не должен пропускать свет, поляризованный ортогонально его собственной плоскости поляризации, но в реальной жизни, все-таки небольшая часть света проходит. Поэтому всем ЖК-дисплеям свойственна недостаточная глубина черного цвета, которая особенно ярко проявляется при высоких уровнях яркости тыловой подсветки.
В результате, в LCD-дисплее световой поток от одних субпикселей проходит через поляризационный светофильтр без потерь, от других субпикселей - ослабляется на определенную величину, а от какой-то части субпикселей практически полностью поглощается. Таким образом, регулируя уровень каждого основного цвета в отдельных субпикселях, можно получить из них пиксель любого цветового оттенка. А из множества цветных пикселей составить полноэкранное цветное изображение.
ЖК-монитор позволил совершить серьезный прорыв в компьютерной технике, сделав ее доступной большому количеству людей. Более того, без LCD-экрана невозможно было бы создать портативные компьютеры типа ноутбуков и нетбуков, планшеты и сотовые телефоны. Но так ли все безоблачно с применением жидкокристаллических дисплеев?

Категория:

Экраны (тесты)

Дата:

08 Сентября 2019 г.




Это интересно
img
06 Августа 2019 г. Экраны (тесты)

Монитор VA2248-LED ViewSonic. Мерцание изображения

На частотном спектре выделяется пик пульсации от работы ШИМ подсветки на частоте 240Гц. Пульсации света до 300 Гц оказывают вредное действие на зрение...

Читать далее ›
img
09 Сентября 2019 г. Лампы (тесты)

Лампа потолочная светодиодная "Армстронг"

При помощи фотоголовки от люксметров серии еЛайт и программы люксметра-пульсметра Эколайт-АП измерен уровень пульсаций потолочного светодиодного светильника "Армстронг" (ноунейм). Получено значение коэффициента пульсаций около 41% при питании от стандартной бытововой сети 220 Вольт, 50 Герц. Судя по результатам, в данном светодиодном светильнике используется некачественный драйвер светодиодов с плохой фильтрацией ого переменного напряжения и охой стабилизацией рабочих токов светодиодов. К сожалению, такая ситуация встречается очень часто.

Читать далее ›
img
05 Сентября 2019 г. Экраны (тесты)

ЭЛТ монитор IIYAMA MS103DT

Картина характерна для всех мониторов на электронно-лучевых трубках (ЭЛТ или CRT). Мы видим характерные периодические вспышки яркости в контролируемой точке экрана при прохождении через нее электронного пучка, активирующего люминофор с частотой кадровой развертки - в данном случае 60 Гц.

Читать далее ›
img
09 Сентября 2019 г. Лампы (тесты)

Лампа потолочная люминесцентная "миньон"

Лампа потолочная люминесцентная "миньон". Пульсация яркости

Читать далее ›